expedient measures - traduzione in greco
Diclib.com
Dizionario ChatGPT
Inserisci una parola o una frase in qualsiasi lingua 👆
Lingua:

Traduzione e analisi delle parole tramite l'intelligenza artificiale ChatGPT

In questa pagina puoi ottenere un'analisi dettagliata di una parola o frase, prodotta utilizzando la migliore tecnologia di intelligenza artificiale fino ad oggi:

  • come viene usata la parola
  • frequenza di utilizzo
  • è usato più spesso nel discorso orale o scritto
  • opzioni di traduzione delle parole
  • esempi di utilizzo (varie frasi con traduzione)
  • etimologia

expedient measures - traduzione in greco

MEASURE OR PROBABILITY DISTRIBUTION WHOSE SUPPORT HAS ZERO LEBESGUE (OR OTHER) MEASURE
Singular measures; Mutually Singular measures

expedient measures      
πρόσφορα μέτρα
πρόσφορα μέτρα      
expedient measures
weights and measures         
  • An example of [[metrication]] in 1860 when Tuscany became part of modern Italy (ex. one "libbra" = 339.54 grams)
  • Palazzo della Ragione]], [[Padua]]
REAL SCALAR QUANTITY, DEFINED AND ADOPTED BY CONVENTION, WITH WHICH ANY OTHER QUANTITY OF THE SAME KIND CAN BE COMPARED TO EXPRESS THE RATIO OF THE TWO QUANTITIES AS A NUMBER (VIM)
History of Weights and Measures; Physical unit; Weights and measures; Weight and measure; Unit (measurement); Weights and Measures; Units of measure; Unit of weight; Unit of Measure; Physical units; History of weights and measures; Weights and meaures; Physical Unit; Measurement unit; Physical Units; Units of measurements; Weight & measures; Weights & Measures; Measurement units; Unit of measure; Unit of Measurement; Units Of Measurement; Units of measurement; Legal unit of measurement; Units (physics); Unit symbol
μέτρα και σταθμά

Definizione

smidgen
a very small amount; similar to a dab
My ice cream sundae needed just a smidgen more chocolate syrup to be perfect.

Wikipedia

Singular measure

In mathematics, two positive (or signed or complex) measures μ {\displaystyle \mu } and ν {\displaystyle \nu } defined on a measurable space ( Ω , Σ ) {\displaystyle (\Omega ,\Sigma )} are called singular if there exist two disjoint measurable sets A , B Σ {\displaystyle A,B\in \Sigma } whose union is Ω {\displaystyle \Omega } such that μ {\displaystyle \mu } is zero on all measurable subsets of B {\displaystyle B} while ν {\displaystyle \nu } is zero on all measurable subsets of A . {\displaystyle A.} This is denoted by μ ν . {\displaystyle \mu \perp \nu .}

A refined form of Lebesgue's decomposition theorem decomposes a singular measure into a singular continuous measure and a discrete measure. See below for examples.